Sequence analysis of four Shigella boydii O-antigen loci: implication for Escherichia coli and Shigella relationships.

نویسندگان

  • L Wang
  • W Qu
  • P R Reeves
چکیده

Shigella strains are in reality clones of Escherichia coli and are believed to have emerged relatively recently (G. M. Pupo, R. Lan, and P. R. Reeves, Proc. Natl. Acad. Sci. USA 97:10567-10572, 2000). There are 33 O-antigen forms in these Shigella clones, of which 12 are identical to O antigens of other E. coli strains. We sequenced O-antigen gene clusters from Shigella boydii serotypes 4, 5, 6, and 9 and also studied the O53- and O79-antigen gene clusters of E. coli, encoding O antigens identical to those of S. boydii serotype 4 and S. boydii serotype 5, respectively. In both cases the S. boydii and E. coli O-antigen gene clusters have the same genes and organization. The clusters of both S. boydii 6 and S. boydii 9 O antigens have atypical features, with a functional insertion sequence and a wzx gene located in the orientation opposite to that of all other genes in S. boydii serotype 9 and an rmlC gene located away from other rml genes in S. boydii serotype 6. Sequences of O-antigen gene clusters from another three Shigella clones have been published, and two of them also have abnormal structures, with either the entire cluster or one gene being located on a plasmid in Shigella sonnei or Shigella dysenteriae, respectively. It appears that a high proportion of clusters coding for O antigens specific to Shigella clones have atypical features, perhaps indicating recent formation of these gene clusters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular analysis of Shigella boydii O1 O-antigen gene cluster and its PCR typing.

Shigella is an important human pathogen and is closely related to Escherichia coli. O-antigen is the most variable part of the lipopolysaccharide on the cell surface of Gram-negative bacteria and plays an important role in pathogenicity. The O-antigen gene cluster of S. boydii O1 was sequenced. The putative genes encoding enzymes for rhamnose synthesis, transferases, O-unit flippase, and O-unit...

متن کامل

Structural and genetic characterization of the Shigella boydii type 13 O antigen.

Shigella is an important human pathogen. It is generally agreed that Shigella and Escherichia coli constitute a single species; the only exception is Shigella boydii type 13, which is more distantly related to E. coli and other Shigella forms and seems to represent another species. This gives S. boydii type 13 an important status in evolution. O antigen is the polysaccharide part of the lipopol...

متن کامل

Enteric bacteria Escherichia coli and Shigella spp

Gene clusters for biosynthesis of 24 of 34 basic O-antigen forms of Shigella spp. are identical or similar to those of the genetically closely related bacterium Escherichia coli. For 18 of these relatedness was confirmed chemically by elucidation of the O-antigen (O-polysaccharide) structures. In this work, structures of the six remaining O-antigens of E. coli O32, O53, O79, O105, O183 (all rel...

متن کامل

Lipopolysaccharide core structures and their correlation with genetic groupings of Shigella strains. A novel core variant in Shigella boydii type 16.

Bacteria Shigella, the cause of shigellosis, evolved from the intestinal bacteria Escherichia coli. Based on structurally diverse O-specific polysaccharide chains of the lipopolysaccharides (LPSs; O-antigens), three from four Shigella species are subdivided into multiple serotypes. The central oligosaccharide of the LPS called core is usually conserved within genus but five core types called R1...

متن کامل

The O-antigen gene cluster of Shigella boydii O11 and functional identification of its wzy gene.

Shigella strains are human pathogens and their identification is usually based on their O-antigens. The O-antigen gene cluster of Shigella boydii O11 was sequenced. All the expected genes for the synthesis of the O-antigen were identified on the basis of homology and genes for the biosynthesis of dTDP-l-Rhamnose, genes encoding sugar transferases, as well as genes encoding O unit flippase (wzx)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 69 11  شماره 

صفحات  -

تاریخ انتشار 2001